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Abstract—This paper proposes the partially parallel low-
complexity Chase (PPLCC) decoding for Reed-Solomon (RS)
codes. With the formulated test-vectors, the Kötter’s interpolation
based Chase decoding events are processed in a partially parallel
manner, maintaining both low decoding complexity and latency.
The decoding will be terminated once a codeword candidate
that satisfies the maximum-likelihood (ML) criterion is found.
Furthermore, a skipping rule is introduced to reduce the de-
coding complexity by assessing the Hamming distance between
an estimated codeword and the test-vector. Simulation results
show that the proposed PPLCC decoding achieves an improved
tradeoff between decoding complexity and latency over several
benchmark decoding schemes.

Index Terms—low-complexity Chase decoding, partially paral-
lel decoding, Reed-Solomon codes

I. INTRODUCTION

Reed-Solomon (RS) codes are widely used in communica-
tion and storage systems. Conventionally, they are decoded
by the efficient Berlekamp-Massey (BM) algorithm [1]. The
Guruswami-Sudan (GS) [2] algorithm and its soft-decision
variant, the Kötter-Vardy (KV) [3] algorithm, can correct er-
rors beyond the half distance bound by formulating the decod-
ing as a curve-fitting problem. They yield a better performance
but a higher decoding complexity. Such interpolation based de-
coding algorithms can be facilitated by various methods. E.g.,
the re-encoding transform [4] and the progressive interpolation
[5] can reduce the interpolation computation and adapt the
decoding complexity to the quality of received information,
respectively. By identifying η unreliable received symbols, the
low-complexity Chase (LCC) decoding [6] formulates 2η test-
vectors and yields a low interpolation complexity by exploiting
the similarity among all test-vectors. Several variants of the
LCC decoding have been proposed, including the hardware
implementation friendly backward-forward LCC (BF-LCC)
decoding [7] and the progressive LCC (PLCC) decoding [8].

In the LCC decoding, the 2η test-vectors can be decoded
in a fully parallel manner resulting in a low latency but a
decoding complexity that has accommodated the redundant
computation. Note that in the Chase decoding paradigm, only
one out of all test-vectors can produce (by decoding) the in-
tended codeword (or message). The PLCC decoding processes
the test-vectors serially and terminates the decoding once the
estimated codeword that satisfies the maximum likelihood
(ML) criterion [9] is found. It can adapt the decoding com-

plexity to the quality of received information. That says if the
received information is less corrupted, the intended codeword
can be found earlier, saving the unneccessary Chase decoding
efforts. But its worst-case complexity remains the same as the
LCC decoding. However, in practice, the decoding hardware
can often support a certain degree of parallel processing.
Hence, it yields room for the design of a partially parallel
LCC decoding that can obtain a better tradeoff between the
decoding complexity and latency. The prioritized interpolation
which performs group-by-group decoding and employs an
early termination based on the polynomial degree has been
proposed in [10]. Within each group, the BF-LCC decoding
is performed. A serial-parallel combined LCC decoding ar-
chitecture has been proposed in [11]. It adjusts the parallel
processing factors within the computation units to maintain
the decoding latency at a certain level.

In order to reduce decoding complexity while maintaining
a low decoding latency, this paper proposes the partially
parallel LCC (PPLCC) decoding. The 2η test-vectors will
be categorized into several groups. Within each group, the
test-vectors will be decoded in parallel. The decoding will
be terminated once a codeword candidate that satisfies the
ML criterion is found. Furthermore, a skipping rule reduces
the decoding complexity. By assessing the Hamming distance
between the estimated codewords and the test-vector, the
redundant Chase decoding efforts are eliminated. The pro-
posed PPLCC decoding is able to maintain both the decoding
complexity and latency at a reduced level. Our simulation
results show that the proposed decoding scheme achieves an
improved tradeoff between decoding complexity and latency
over several benchmark decoding schemes for RS codes.

II. PREREQUISITES

Let Fq = {σ0, σ1, . . . , σq−1} denote the finite field of size
q. We consider an (n, k) RS code, where n and k are the length
and dimension of the code, respectively. Given a message
polynomial

f(x) = f0 + f1x+ · · ·+ fk−1x
k−1, (1)

where f0, f1, . . . , fk−1 ∈ Fq are the message symbols, the
codeword can be generated by

c = (c0, c1, . . . , cn−1) = (f(α0), f(α1), . . . , f(αn−1)), (2)
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where α0, α1, ..., αn−1 are n distinct nonzero elements of Fq .
In the interpolation based decoding, message polynomial

f(x) can be recovered by finding y-roots of the interpolation
polynomial Q(x, y) =

∑
a,b Qa,bx

ayb where Qa,b ∈ Fq .
They can be organized under the (µ, ν)-reverse lexicographic
(revlex) order, which is defined as follows. For a bivariate
monormial xayb, its (µ, ν)-weighted degree is degµ,νx

ayb =
µa + νb. Given xa1yb1 and xa2yb2 , it is claimed xa1yb1 <
xa2yb2 , if degµ,νx

a1yb1 < degµ,νx
a2yb2 , or degµ,νx

a1yb1 =

degµ,νx
a2yb2 and b1 < b2. If xa′

yb
′

is the leading monomial
(LM) of Q with Qa′b′ ̸= 0, the (µ, ν)-weighted degree of Q is
degµ,νQ = degµ,νx

a′
yb

′
. Given two polynomials Q1 and Q2

with LM(Q1) = xa′
1yb

′
1 and LM(Q2) = xa′

2yb
′
2 , respectively,

Q1 < Q2 if LM(Q1) < LM(Q2). In the proposed PPLCC
decoding, re-encoding transform will be employed to reduce
the interpolation complexity. As a result, µ = 1 and ν = −1.
Polynomials are organized under the (1,−1)-revlex order.

III. THE LCC AND PLCC DECODING

This section revisits the LCC and the PLCC decoding. It
starts with the test-vectors formulation.

A. Test-vectors Formulation

Assume that an RS codeword c is transmitted over a
memoryless channel and r = (r0, r1, . . . , rn−1) ∈ Rn is
the received vector. The reliability matrix Π ∈ Rq×n with
entries πi,j = Pr(rj |cj = σi) can be obtained, where
0 ≤ i ≤ q − 1 and 0 ≤ j ≤ n − 1. Let iIj = argmaxi{πi,j}
and iIIj = argmaxi,i̸=iIj

{πi,j}. The two most likely decisions
of codeword symbol cj are rIj = σiIj

and rIIj = σiIIj
. The

following metric is defined to assess the reliability of rj

γj =
πiIj ,j

πiIIj ,j

, (3)

where γj ∈ [1,∞). rj is more reliable if γj is greater, and vice
versa. By sorting γj in a descending order, a new symbol index
sequence j0, j1, . . . , jn−1 is obtained. It indicates γj0 ≥ γj1 ≥
· · · ≥ γjn−1 . We define the index set of n − η most reliable
symbols as Θ = {j0, j1, . . . , jn−η−1}, and its complementary
set will be Θc = {jn−η, jn−η+1, . . . , jn−1}. Therefore, all
test-vectors can be written as

ru = (r
(u)
j0

, r
(u)
j1

, . . . , r
(u)
jn−1

), (4)

where r
(u)
j = rIj if j ∈ Θ, and r

(u)
j = rIj or rIIj if j ∈ Θc, and

u = 0, 1, . . . , 2η−1. Since there are two decisions for each of
the η unreliable symbols, 2η test-vectors can be formulated.

B. Re-encoding Transform

The re-encoding transform can be employed to reduce the
interpolation complexity. Let η ≤ n−k so that all test-vectors
share at least k common symbols. The index set of the k most
reliable symbols is defined as Ψ = {j0, j1, . . . , jk−1} and its
complementary set will be Ψc = {jk, jk+1, . . . , jn−1}. A re-
encoding codeword h = (h0, h1, . . . , hn−1) can be generated
by setting hj = rIj ,∀j ∈ Ψ and determining the remaining

symbols of Ψc by erasure decoding [4]. Consequently, all test-
vectors can be transformed by

z
(u)
j = r

(u)
j − hj ,∀j. (5)

In a reliability sorted order, the transformed test-vectors can
be written as

zu = (0, 0, . . . , 0, z
(u)
jk

, . . . , z
(u)
jn−η

, . . . , z
(u)
jn−1

). (6)

C. Common Element Interpolation

For a test-vector zu, interpolation is to construct a minimal
polynomial g(x, y) that satisfies g(αj , z

(u)
j ) = 0, ∀j. The

above description shows that all test-vectors share n − η

common interpolation points (αj , z
(u)
j ),∀j ∈ Θ. With the

re-encoding transform, the first k points become (αj , 0),
where j ∈ Ψ. Their interpolation property can be estab-
lished by polynomial

∏
j∈Ψ(x − αj). Let Ψ′ = Ψc\Θc =

{jk, jk+1, · · · , jn−η−1} and (αj , z
(u)
j ), where j ∈ Ψ′, are the

remaining common points that all test-vectors share. In the
common element interpolation, the n−η−k points need to be
interpolated by Kötter’s interpolation [12]. The interpolation
polynomial set is initialized as

G = {g0(x, y), g1(x, y)} = {1, y}. (7)

Let i∗ = argmini{gi(x, y)|gi(αj , z
(u)
j ) ̸= 0}, g∗(x, y) =

gi∗(x, y) and ρ(x, y) = G\g∗(x, y). To interpolate (αj , z
(u)
j ),

g∗(x, y) and ρ(x, y) will be updated as

ρ′(x, y) = g∗(αj , z
(u)
j ) · ρ(x, y)− ρ(αj , z

(u)
j ) · g∗(x, y), (8)

g∗′(x, y) = g∗(αj , z
(u)
j ) · (x− αj) · g∗(x, y). (9)

The above updates will be performed with the n − η −
k points. At the end, an updated polynomial set G̃ =

{gi(x, y)|gi(αj , z
(u)
j ) = 0, ∀j ∈ Ψ′} can be obtained, based

on which the following uncommon element interpolation is
performed.

D. Uncommon Element Interpolation

The uncommon element interpolation is performed for test-
vector zu by interpolating η points (αj , z

(u)
j ), ∀j ∈ Θc with

the interpolation operations defined by (8) - (9). Let G(u)
w de-

note the uth polynomial set obtained by interpolating w points.
When w = 0, G(u)

0 = G̃ as all test-vectors inherit the common
element result. After η points are interpolated, 2η polynomial
sets G(u)

η = {g(u)i (x, y)|g(u)i (αj , z
(u)
j ) = 0,∀j ∈ Ψc} are

obtained. G(u)
η is the interpolation outcome w.r.t. test-vector

zu. The interpolation polynomial for each test-vector can be
chosen by

g(u)(x, y) = min{g(u)0 (x, y), g
(u)
1 (x, y)}. (10)

The estimated message polynomial f̂ (u)(x) can be recovered
by finding y-roots of g(u)(x, y) where g(u)(x, y) = Q

(u)
0 (x)+

Q
(u)
1 (x) · y. Hence f̂ (u)(x) can be determined by

f̂ (u)(x) = −V (x) ·Q(u)
0 (x)

Q
(u)
1 (x)

, (11)
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where V (x) =
∏

j∈Ψ (x− αj). Since the re-encoding trans-
form is applied, the error magnitudes in Ψ can be determined
by

ê
(u)
j = −ĉ

(u)
j + hj = −f̂ (u)(αj), (12)

where j ∈ Ψ. With the error magnitudes, errors in Ψ can
be corrected. By using erasure decoding and inversing re-
encoding transform, the remaining symbols of the estimated
codeword ĉ(u) will be obtained. After decoding all 2η test-
vectors, at most 2η distinct codeword candidates will be
obtained. Based on r, the most likely candidate and its cor-
responding message will be selected as the decoding outputs.

�0
(0)

�1
(0)

�1
(1)

…

��
(0)

��
(1)

��
(2�−2)

��
(2�−1)

… …

��−1
(0)

��−1
(2�−1−1)

…

… …

… …

Fig. 1. Binary tree representation of the uncommon element interpolation.

The above mentioned processes constitute the LCC decod-
ing [6], where its uncommon element interpolation can be
interpreted as a binary tree growing process in a layer-by-
layer manner as illustrated in Fig. 1. Since all test-vectors
are decoded in parallel, besides low complexity, low decoding
latency can also be ensured.

E. The Progressive Variant

As a progressive variant of the above mentioned LCC
decoding, the PLCC decoding decodes all test-vectors in a
sequential manner, prioritizing to decode the more reliable
test-vectors. Given a test-vector ru = (r

(u)
0 , r

(u)
1 , . . . , r

(u)
n−1),

its reliability can be determined by

Ωu =

n−1∏
j=0

π
i
(u)
j ,j

, (13)

where i
(u)
j = index{σi|σi = r

(u)
j }. The test-vector with a

larger Ωu is considered to be more reliable. It is more likely to
produce the intended message and should be decoded earlier.
Since all test-vectors share the common symbols rIj , where
j ∈ Θ, the reliability function can be simplified into

Ω̂u =
∏
j∈Θc

π
i
(u)
j ,j

. (14)

Based on Ω̂u, order all transformed test-vectors yielding
zv0 , zv1 , . . . , zv2η−1

where Ω̂v0 ≥ Ω̂v1 ≥ · · · ≥ Ω̂v2η−1
. Note

that zv0 is the hard-decision received codeword. The decoding
will process in the above order. If an estimated codeword that
satisfies the ML criterion stated as Lemma 1′ of [9] is found,
the decoding will be terminated. More detailed descriptions
of the ML criterion can be referred to the Appendix A of

[13]. With this ML codeword assessment, the decoding can
be terminated earlier, especially when the received vector is
not heavily corrupted. As a result, the decoding complexity
can be significantly reduced. Unlike the LCC decoding, the
PLCC decoding grows the binary tree in a depth-first-search
manner [8]. During decoding the test-vectors, the intermediate
interpolation information will be stored. The decoding of a
test-vector will not start from G(0)

0 but the nearest available
node which stores the intermediate interpolation information.

It has been observed that the codeword that satisfies the ML
criterion can often be identified by decoding the first few test-
vectors, especially when the channel condition is good. Table I
illustrates this property of the ML criterion. The (248, 216) RS
code, which is often used in optical communication networks,
is simulated. These results were obtained by using the PLCC
decoding with η = 8 over the additive white Gaussian noise
(AWGN) channel with BPSK modulation. We use NET to
denote the number of test-vectors which have been decoded
when an early termination occurs. Table I shows that early
termination occurs more frequently as the signal-to-noise ratio
(SNR) increases. When the SNR is 6 dB, majority of the
Chase decoding outputs produce the ML codeword by only
processing the hard-decision received codeword.

TABLE I
PERCENTAGE OF EARLY TERMINATION IN DECODING THE (248, 216) RS

CODE WITH η = 8

SNR
(dB) NET = 1 2 ≤ NET ≤ 6 NET ≥ 7

Failed to Satisfy
the ML Criterion

4.5 0.17% 0.01% 0.07% 99.76%
5 10.85% 0.18% 0.12% 88.85%

5.5 69.68% 0.46% 0.10% 29.76%
6 98.85% 0.08% 0.01% 1.06%

IV. THE PPLCC DECODING

This section proposes the PPLCC decoding. For the LCC
decoding, fully parallel processing of all test-vectors is reliazed
to achieve low decoding latency. But the decoding complexity
is rather high since all test-vectors should be decoded. In
contrast, the PLCC decoding has a lower decoding complexity
thanks to its serial decoding manner and the early termination.
But its worst-case latency can be much higher than the LCC
decoding. In order to achieve an improved tradeoff between
the decoding complexity and latency, the PPLCC decoding
is proposed. In practice, decoding circuits can often support
a certain degree of parallelism, providing the resources to
decode a portion of test-vectors in parallel. To exploit this
possibility, one straightforward approach is to divide the test-
vectors into multiple groups and the test-vectors within each
group are decoded in parallel. The test-vectors grouping is
described as follows.

A. Test-vectors Grouping
Let P denote the maximum degree of parallelism indicating

that at most P test-vectors can be decoded in parallel. The test-
vectors are divided into M groups denoted as s1, s2, . . . , sM .
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Let zκ,m denote the mth test-vector of sκ and Nκ denote
the number of test-vectors in group sκ, respectively, where
κ = 1, 2, . . . ,M . Hence, sκ = {zκ,1, zκ,2, . . . , zκ,Nκ

}. The
test-vectors can be grouped with the fixed parallelism or the
progressive parallelism.

1) Fixed Parallelism Grouping: In this case, all groups
contain the same number of test-vectors, i.e., M = 2η/P ,
and the degree of parallelism is

Nκ = P. (15)

Note that in this work it is assumed that P |2η .
2) Progressive Parallelism Grouping: Alternatively, the

groups can contain different number of test-vectors. Let ∆
denote the number of test-vectors in s2 and W = (1 +∆)/P
where 0 < ∆ ≤ P − 1. Nκ can also be chosen based on the
observation of Table I and M = 2η/P + ⌈2−W⌉. Hence, the
test-vectors will be grouped in a progressive manner

Nκ =


1, if κ = 1;

∆, if κ = 2;

(1 + ⌊W⌋) · P − 1−∆, if κ = 3;

P, if 3 < κ ≤ M.

(16)

Therefore, the first group only contain the hard-decision re-
ceived codeword. The rest of the ∆ most reliable test-vectors
are contained in the second group. Based on the observation
of Table I, we can reliaze that if the codeword that satisfies
the ML criterion can be found, they are far more likely to
be found by decoding the first few most reliable test-vectors.
Hence, they should be decoded in the earlier groups. In order
to compromise the decoding complexity, ∆ should not be
too large. For the third group, there are two conditions. If
(1 + ∆) is smaller than P , i.e. W < 1, the third group
contains P −1−∆ test-vectors. Otherwise, it contains P test-
vectors, i.e., (1 + ⌊W⌋) ·P − 1−∆ = P . Since the decoding
outputs produced by the remaining test-vectors rarely satisfy
the ML criterion, the degree of parallelism will be improved
to reduce the decoding latency. Hence, each group contains P
test-vectors for 3 < κ ≤ M .

B. The Skipping Rule

A skipping rule is further introduced to reduce the decod-
ing complexity. Based on the Hamming distance between a
decoded codeword and the test-vector, the redundant Chase
decoding efforts can be eliminated [14]. Let dH(r1, r2) denote
the Hamming distance between two equal length vectors r1
and r2, both of which are defined over Fq . Let τ denote
the error-correcting radius of the decoding scheme. Note that
in the discussed interpolation based Chase decoding events,
the interpolation is conducted with a multiplicity of one
over all points. It yields an error-correction capability of
τ = ⌊(n− k)/2⌋.

Lemma 1. Given a decoded codeword ĉ(u
∗) in the decoding

output list, where the radius of the Hamming sphere is τ , and
a test-vector zu, if dH(ĉ(u

∗), zu) ≤ τ , zu can be skipped.

Proof. Assume that the test-vector zu∗ produces a code-
word ĉ(u

∗). If zu lies within the Hamming sphere of ĉ(u
∗),

i.e. dH(ĉ(u
∗), zu) ≤ τ , it will be decoded as ĉ(u

∗). It indicates
that the decoding of zu will produce the same outcome as the
decoding of zu∗ . Therefore, there is no need to decode zu.□

After decoding sκ, we will filter the test-vectors in sκ+1

by comparing them with the decoded codewords. This helps
reduce the decoding complexity significantly. Note that the
skipping rule in Lemma 1 and that in [14] are different. In
our method, once the Hamming distance between zu and any
decoded codeword is not greater than τ , it will be determined
to be skipped and there is no need to compare it with the
whole decoding output list, while the complete comparison
between zu and all decoded codewords is done in [14].

Algorithm 1 The PPLCC Decoding Algorithm
Input: r, η, P , Π, N1, N2, . . . , Nκ;
Output: ĉ;
1: Formulate 2η test-vectors ru as in (4);
2: Perform the re-encoding transform to yield zu as in (6);
3: Calculate Ω̂u for each test-vector as in (14);
4: Re-order z0, z1, . . . , z2η−1 as zv0 , zv1 , . . . , zv2η−1

, such
that Ω̂v0 ≥ Ω̂v1 ≥ · · · ≥ Ω̂v2η−1

;
5: Initialize s1 as in (15) or (16);
6: Let ξ = N1;
7: for κ = 1 to M do
8: Decode the test vectors of sκ;
9: Update the decoding output list;

10: if there is a decoded codeword satisfies the ML criterion
11: Terminate the decoding and output this codeword as

ĉ;
12: if ξ ≥ 2η

13: Terminate the decoding;
14: for m = 1 to Nκ+1 do
15: while zvξ satisfies Lemma 1 and ξ < 2η do
16: Skip decoding zvξ and ξ = ξ + 1;
17: end while
18: if ξ < 2η

19: zκ+1,m = zvξ and ξ = ξ + 1;
20: end for
21: end for
22: The most likely codeword candidate will be selected as ĉ.

C. The Algorithm

The above description shows that the test-vectors can be
grouped and decoded in a partially parallel manner, yielding
priority to decode the more reliable test-vectors to achieve
early termination. The decoding can also be facilitated by the
skipping rule which helps eliminate the redundant decoding
computations. First, the 2η test-vectors ru will be formulated
and transformed to zu by the re-encoding approach. By
sorting their reliabilities, z0, z1, . . . , z2η−1 will be re-ordered
as zv0 , zv1 , . . . , zv2η−1

. The first group s1 will be initialized
with fixed or progressive parallelism grouping as in (15) or
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(16), respectively. N1 test-vectors in s1 will be decoded. After
decoding a group, decoding output list will be updated. The
decoded codewords will be validated with the ML criterion to
check if an ML codeword has been found. If so, the decoding
will be terminated. If not, the decoding will continue to process
the next group. Let ξ denote the number of test-vectors which
have been decoded (or skipped). The N2 test-vectors will be
filtered from sorted test-vectors zvξ , zvξ+1

, . . . , zv2η−1
by the

skipping rule. If the Hamming distance between a test-vector
zvξ and any codeword in the decoding output list is not greater
than τ , this test-vector will be skipped. Otherwise, it will
remain in s2 to be decoded. The above decoding procedure
will perform for the M groups in a group-by-group manner.
Note that the decoding within a group are performed in parallel
and the intermediate interpolation information will be stored.
This is similar to the PLCC decoding, while interpreted over
the binary interpolation tree of Fig. 1, the decoding of a test-
vector will start from the nearest available node over the tree.
The PPLCC decoding is summarized as in Algorithm 1.

V. SIMULATION RESULTS

This section shows the decoding complexity, latency and
performance of proposed PPLCC decoding. The decoding
complexity is measured as the average number of finite field
multiplications in a decoding event. The decoding latency is
measured as either the average running time required to decode
a codeword or the average number of decoded groups when
decoding terminates. The decoding performance is measured
as the frame error rate (FER). Our results were obtained
over the AWGN channel using BPSK modulation. The LCC,
the PLCC and the PLCC with the skipping rule (marked as
PLCC(SR)) decoding are used as the comparison benchmarks.
For the PPLCC decoding, simulation results of both the fixed
parallelism grouping (marked as PPLCC (Fixed)) and the
progressive parallelism grouping (marked as PPLCC (Progres-
sive)) are shown. For the latter, ∆ = 7 when P = 8, and
∆ = 8 when P > 8. Note that PLCC (SR), PPLCC (Fixed)
and PPLCC (Progressive) are facilitated by the skipping rule.

A. Decoding Complexity

Table II compares the complexity of related schemes in
decoding the (248, 216) RS code with η = 8 and P = 16.
Table II shows that the PLCC (SR) decoding is less complex
than the PLCC decoding since redundant test-vectors decoding
computations have been eliminated with the skipping rule.
The PPLCC (Fixed) and the PPLCC (Progressive) decoding
achieve a much lower complexity compared with the LCC
decoding due to their partially parallel decoding architecture.
The PPLCC (Progressive) decoding outperforms the PPLCC
(Fixed) decoding since it can further utilize the property of
the ML criterion, which was also demonstrated by Table I.

Table III shows the percentage reduction in complex-
ity achieved by the PPLCC (Progressive) decoding over
the LCC and the PPLCC (Fixed) decoding with P =
8, 16, 32. The complexity reduction percentage is calculated
as ((CPPLCC(Prog.)−Cbenchmark)/Cbenchmark)×100%, where

CPPLCC(Prog.) and Cbenchmark denote the decoding complex-
ity of the PPLCC (Progressive) decoding and benchmark
schemes, respectively. With different P , the PPLCC (Progres-
sive) decoding is able to reduce the decoding complexity sig-
nificantly. This advantage becomes more obvious as the SNR
increases, where early termination occurs more frequently.

TABLE II
COMPLEXITY COMPARISON IN DECODING THE (248, 216) RS CODE WITH

η = 8 AND P = 16

SNR
(dB) LCC PLCC PLCC

(SR)
PPLCC
(Fixed)

PPLCC
(Progressive)

5.7 3.87× 106 8.03× 105 2.39× 105 4.68× 105 2.65× 105

5.9 3.72× 106 2.93× 105 1.07× 105 3.19× 105 1.27× 105

6.1 3.57× 106 1.20× 105 7.85× 104 2.84× 105 8.04× 104

6.3 3.43× 106 7.66× 104 7.14× 104 2.69× 105 7.21× 104

TABLE III
COMPLEXITY REDUCTION OF THE PPLCC (PROGRESSIVE) IN DECODING

THE (248, 216) RS CODE WITH η = 8 AND P = 8, 16, 32

SNR
(dB)

Complexity Reduction
over the LCC

Complexity Reduction
over the PPLCC (Fixed)

P = 8 P = 16 P = 32 P = 8 P = 16 P = 32
5.7 -93.04% -93.15% -93.13% -19.34% -43.29% -61.11%
5.9 -96.79% -96.57% -96.78% -43.58% -60.12% -78.38%
6.1 -97.66% -97.75% -97.78% -51.97% -71.71% -84.21%
6.3 -97.91% -97.90% -97.88% -56.05% -73.22% -84.86%

B. Decoding Latency

The decoding latency can be measured as the average
running time required to decode a codeword. Since the parallel
decoding operations are driven by the same clock, we can also
use the average number of decoded groups when decoding
terminates to assess the latency performance in another per-
spective. Table IV shows the average running time required to
decode a codeword and the average number of decoded groups
when decoding terminates of related schemes in decoding the
(248, 216) RS code with η = 8 and P = 16. We use trt
and Ndg to denote the average running time and the average
number of decoded groups, respectively. These results were
obtained by implementing the decoding schemes using the C
programming language and on the Intel core i7-11700 CPU.
Note that for the LCC and the PPLCC decoding schemes,
the average running time is estimated by dividing the total
running time by the degree of parallelism. Table IV shows
that the LCC decoding which decodes all test-vectors in a fully
parallel manner achieves the lowest running time and decodes
the least groups since all test-vectors are seen as in one group.
The PLCC decoding which performs decoding serially yields
the highest running time and decodes the largest number
of groups. The reduction in the number of decoded groups
yielded by the PLCC (SR) decoding over the PLCC decoding
shows the number of unnecessary test-vectors reduced by the
skipping rule. The PPLCC (Progressive) decoding outperforms
the PLCC and the PLCC (SR) decoding. But its latency is
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slightly higher than the PPLCC (Fixed) decoding since it may
decode one or two more groups of test-vectors.

TABLE IV
AVERAGE RUNNING TIME (MS) AND AVERAGE NUMBER OF DECODED

GROUPS IN DECODING THE (248, 216) RS CODE WITH η = 8 AND P = 16

SNR
(dB)

LCC PLCC PLCC
(SR)

PPLCC
(Fixed)

PPLCC
(Progressive)

trt Ndg trt Ndg trt Ndg trt Ndg trt Ndg

5.7 8.1 1.0 86.3 46.1 54.6 11.0 11.2 1.9 17.8 2.2
5.9 8.2 1.0 35.0 14.5 20.1 3.0 9.3 1.2 12.3 1.4
6.1 8.2 1.0 13.4 3.9 10.8 1.3 8.2 1.0 9.4 1.1
6.3 7.9 1.0 9.2 1.4 8.9 1.0 7.8 1.0 8.9 1.0

Table V shows the percentage reduction in the number of
decoded groups yielded by the PPLCC (Progressive) decoding
over the PLCC (SR) and the PPLCC (Fixed) decoding with
P = 8, 16, 32. The decoded groups reduction percentage is
calculated as ((NPPLCC(Prog.) −Nbenchmark)/Nbenchmark)×
100%, where NPPLCC(Prog.) and Nbenchmark denote the
decoded groups of the PPLCC (Progressive) decoding and
benchmark schemes, respectively. It is obvious that the PPLCC
(Progressive) decoding is able to reduce decoded groups in
comparison with the PLCC (SR) decoding. The PPLCC (Pro-
gressive) decoding decodes a slightly higher number of groups
over the PPLCC (Fixed) decoding. However, their differences
diminish as the SNR increases since early termination occurs
by only processing the hard-decision received codeword.

TABLE V
DECODED GROUPS REDUCTION OF THE PPLCC (PROGRESSIVE) IN

DECODING THE (248, 216) RS CODE WITH η = 8 AND P = 8, 16, 32

SNR
(dB)

Decoded Groups Reduction
over the PLCC (SR)

Decoded Groups Reduction
over the PPLCC (Fixed)

P = 8 P = 16 P = 32 P = 8 P = 16 P = 32
5.7 -74.30% -86.92% -83.29% 16.94% 23.81% 27.78%
5.9 -51.55% -54.32% -58.45% 7.14% 15.78% 11.97%
6.1 -17.58% -20.35% -21.80% 4.25% 2.58% 2.43%
6.3 -1.58% -1.28% -1.35% 0.38% 0.71% 0.67%

C. Decoding Performance

Fig. 2 shows FER performance of the (248, 216) RS code.
The Chase decoding schemes with η = 8 outperform the BM
decoding. They yield the same performance since their error
correcting capabilities are mainly determined by η. Revisiting
Tables II - V, the PPLCC (Progressive) decoding achieves
the best tradeoff between decoding complexity and latency
over other benchmark schemes. It maintains the same LCC
decoding performance.

VI. CONCLUSION

This paper has proposed the PPLCC decoding for RS
codes. The Kötter’s interpolation based Chase decoding events
process the formulated test-vectors in a partially parallel
manner. The decoding will be terminated once a codeword
candidate that satisfies the ML criterion is found. Furthermore,
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Fig. 2. Decoding performance of the (248, 216) RS code.

a skipping rule has been introduced to reduce the decoding
complexity by assessing the Hamming distance between a
decoded codeword and the test-vector. Our simulation re-
sults have shown that the proposed PPLCC decoding scheme
achieves an improved tradeoff between decoding complexity
and latency over several benchmark Chase decoding schemes.
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